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l\OMEl\CLATURE

fin length
fin parameter
temperature
base temperature
axial distance
dimensionless distance, X/L
dimensionless temperature, T/T.,

Expanding equation (3) we have

flY) = f(y)+M(y,oY)+02f(if!,oy) (5)

where

if! = y+r(Y - y), 0,;;;; f ,;;;; 1. (6)

Using the fact [3] that f(y) = bI(y,oy) = O,inequation (5)we.
have

attains a minimum f(y) = 0 on the exact solution y of
equations (I) and (2). Let Y = y+oy be an approximate
solution that satisfies the boundary conditions (2) identically,
i.e.
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(12)

(13)

(17)

(14)

(IS)

q,; +).;q,. = 0,

q,.(O) = q,~(1) = O.

lIoyllL~ = sup 10YI·
XE(O.1)

A(if!) = 4N 1/4(if!")3f4'

C(if!) = 4Nif!3.

u ~ Sf2.

In equation (12),S is given by

S={li[2'1- :te;J+2+ :~J
and If is the smallest (first) eigenvalue of the spectral problem
[3]

2'1 = 4NI/4[N(Ymax +f)4+(Y")m.. -N(Ymin-f)4r/4 (16)

and

where e > 0 and K(e) = l/e+ 12, and using definitions (10) in
equation (7) we get

The estimate on f= 1I0YIIL~ is determined as the positive
solution of the inequality (12).

It is easy to see that in the present case that

A(if!) ~ 2'l(Y,f); C(I/t) ~ 2'2(Y,f). (10)

Using the following inequality [4]:

J: 0/2 dx s; e f: oy"2 dx+K(e) f: oy2 dx (11)

From equation (7) we want to estimate the L", norm of oy,

Let 2'1and 2'2 be constants (depending on Yandf = 1I0yllLJ
such that

where

(3)

(4)

(2)

oy(O) = 0/(1) = O.

y(O) = I, /(1) = O.

2. VARIATIONAL PRINCIPLE

The non-linear boundary value problem (I) and (2) belongs
to a class of boundary value problems for which a variational
principle was developed in ref. [3], we conclude that the
functional

f = J: [/2+~ y3+ 5:1/4 (y")3/4] dx -(yy')~

In equation (I), y is the dimensionless temperature, x is the
dimensionless distance and N is the fin parameter-a quantity
related to the emissivity base temperature and the dimensions
of the fin. The solution to equations (1) and (2) may be
expressed (implicitly) in terms of incomplete beta functions
[1]. In some generalized radiating fin problems [2], an explicit
dependence of yon x is required. In these cases the problem (1)
and (2) is solved approximately.

Our intention in this note is to demonstrate a new
variational principle presented in ref. [3] for the problem (1)
and (2). First, we will obtain an approximate solution for
equations (1)and (2) by using the Ritz procedure. After that a
method willbe presented, based on the value of the functional,
for the estimation of the L", norm of the error of the
approximate solution. The error estimate procedure
complements one given in ref. [3] and is new.

I. Il\TRODUCfION

CO)-iSIDERa straight fin of uniform thickness and length L The
fin surface radiates to an environment with zero temperature.
If we assume that: (i) thermal properties are independent of
temperature, (ii) conduction is l-dim., (iii) the fin tip is
insulated, and (iv) there is no fin to base radiation, then the
differential equation that describes the problem becomes

y"_Ny4 = O, O<x<1 (1)

subject to the following boundary conditions:
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Note that the inequality (12) could be 'optimized' by
choosing such a value for e > 0 that will make the estimate that
follows from equation (12) minimal.

For completeness we cite the L2 error bound derived in [3],

(5.
1 )1/2 ( 1 )1/2

lI<5yIIL, = <5y2 dx = A . }"+2}2+C . • (18)
o mm "I "I nun

To illustrate the procedure, we performed calculations with
the trial functions of the form
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Table I

N P I lI<5yIlL~ ~

0.5 0.157 0.0169 0.113
I 0.236 0.03457 0.172
2 0.329 0.329 0.25

• 1t
y= I-p SIn-X

2

0.0533
0.0766
0.108

(19)

where Pis a constant to be determined. Substituting equation
(19)into(3)and minimizing with respect to pthevaluesgiven in
Table I are obtained. With these values for p, estimates for
errors are calculated from equation (12) (with £ = 0.1) and
equation (18).

Finally, we note that the accuracy of the approximate
solution and the bounds on errors could be improved by
taking more elaborate trial functions.
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i\'O:\lEi\'CLATURE

A, see equation (12)
Bi Biot number, hrJk
Ci see equation (6)
Fo Fourier number, dimensionless time, a.t/r;
i», Fo, when <5 approaches 1
f see equation (9)
h heat-transfer coefficient [W m- 2 K- I ]

k thermal conductivity of the pellet [W m- I K -I]
r dimensionless radial distance, referred to r.
r. radius of spherical particle Em]
t time [s]
T dimensionless temperature, referred to To
To dimensionless gas temperature, referred to To
1; dimensionless pellet surface temperature, referred

to To
1;.~ 1;, when s approaches 1
To initial temperature [K]

Greek symbols
a. thermal difTusivity of the pellet [m? S-I]

<5 dimensionless penetration depth of the thermal
wave, measured from the particle surface, referred
to r.

9 dimensionless surface temperature, (T,- T,)/(I- To)
o dimensionless quantity, 1-(1-Bi)9

I. Il'."fRODUCfION

THE PURPOSE of the present note is to compare approximate
solutions of the heat conduction equation for aspherefound in
the literature [1-3] and to give an improved approximation

for long heating times. In particular, attention is focused on
the surface temperature which plays an important role in
many engineering problems, e.g. the convective heat transfer
to particles or droplets in two-phase flow. As is well known, for
many types of boundary conditions, there exist analytical
solutions of the heat conduction equation expressed in terms
of infinite series [4]. In more complicated cases numerical
exact solutions can be obtained from a number ofcapable and
flexible soft wares [5]. However, within the scope ofa complex
two-phase flow problem which can only be treated
numerically [1-3], one cannot employ the solution for single
particles. This fact is essentially due to insufficient computer
field length and too long computation time. Therefore, the
use of approximate solutions is necessary. Moreover, the
application of approximate methods is justified in practical
engineering, where the general validity of a solution is not as
important as a fast and simple treatment of the problem to be
solved. For that reason, in the present paper a comparison
between the approximation formulas mentioned above [1-3],
a solution obtained under the assumption ofa spatial uniform
pellet temperature, and a numerical exact solution is
presented. The validity range of the best approximation
formula is extended to larger time intervals. The ODE's
obtained from this approximation method are solved
analytically for the case of constant heat transfer coefficient
and constant gas temperature.

2. GOYERi\'Ii\'G EQUATIOi\' AND METHOD
OF APPROXI;\IATE SOLUTIOi\'

The basic equation is the heat conduction equation for a
.sphere,

(I)




